banner

소식

Oct 11, 2023

바이칼호에서 채취한 천연가스 수화물에 포집된 가스의 특성과 종류

Scientific Reports 13권, 기사 번호: 4440(2023) 이 기사 인용

511 액세스

1 인용

3 알트메트릭

측정항목 세부정보

2005년부터 2019년 사이에 바이칼 호수 남부 및 중앙 하위 유역의 59개 수화물 함유 지역에서 수집된 수화물 결합 가스의 분자 및 안정 동위원소 조성이 보고되었습니다. 수화물 결합 메탄의 δ2H는 호수 물과 바닷물의 δ2H 차이로 인해 해양 환경의 값보다 약 120‰ 낮은 −310‰에서 −270‰ 사이에 분포합니다. 수화물 결합 가스는 미생물(1차 및 2차), 열 발생 및 혼합 가스 소스에서 발생합니다. 미생물 에탄(δ13C: - 60‰, δ2H: - 310‰ ~ - 250‰)을 포함하는 가스 수화물이 전체 현장의 약 1/3에서 회수되었으며, 이들의 안정 동위원소 조성은 열 발생 에탄(δ13C: − 25‰, δ2H: − 210‰). 거의 보고되지 않은 에탄의 낮은 δ2H는 수소 동위원소 비율이 낮은 호수 물이 메탄뿐만 아니라 미생물 에탄의 형성 과정에도 영향을 미친다는 것을 처음으로 시사합니다. 포접된 메탄과 에탄을 함유한 구조 II 수화물은 8개 현장에서 수집되었습니다. 열발생 가스에서는 에탄보다 무거운 탄화수소가 생분해되어 메탄-에탄 가스가 혼합된 독특한 시스템이 생성됩니다. 메탄과 에탄을 포집하는 수화물의 분해와 재결정화는 에탄의 농축으로 인해 구조 II 수화물의 형성을 가져왔습니다.

천연가스 수화물에 둘러싸인 탄화수소는 해양/호수 퇴적물과 영구동토층 아래층에서 발생합니다. 천연가스 수화물은 잠재적인 미래 에너지 자원1,2,3,4일 뿐만 아니라 두 번째로 중요한 온실가스인 메탄(C1)의 대규모 저장고이기도 합니다5,6. 가스 수화물은 게스트 분자가 수소 결합으로 구성된 물 케이지에 둘러싸여 있는 결정질 화합물입니다. 서로 다른 크기의 케이지 조합으로 인해 발생하는 결정 구조의 차이는 수화 수, 케이지 점유율 및 해리열과 같은 물리화학적 특성에 영향을 미칩니다. 천연가스 수화물의 세 가지 결정학적 구조는 입방체 구조 I(sI), 입방체 구조 II(sII), 육각형 구조 H(sH)7,8로 확인되었습니다. sI는 12면체(512) 및 4개12면체(51262) 케이지로 구성되는 반면, sII는 512개 및 612면체(51264) 케이지로 구성됩니다. sh는 단위 셀에 큰 정이십면체(51268) 케이지를 갖고 있으며 더 큰 게스트 분자를 캡슐화할 수 있습니다.

Natural hydrocarbon gases can be primarily classified as biogenic or abiogenic gases. Biogenic gases are further divided into two types: microbial and thermogenic. Microbial gases mainly consist of C1 produced under anaerobic conditions by methanogens classified as archaea, and two pathways are known: CO2 reduction and methyl-type fermentation. In contrast, thermogenic gases are produced by the thermal cracking of organic matter in deep sediment layers and contain heavier hydrocarbons, such as ethane (C2), propane (C3), and butane (C4). Additionally, secondary microbial gases produced by microbes during biodegradation of petroleum appear more abundant than primary microbial gases9. To estimate the origin of natural hydrocarbon gases, diagrams have been proposed and refined using the molecular ratio of heavier hydrocarbons to C1 and their carbon isotope ratios10,11,12,20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e682">13. 최근에는 기계 학습 모델14을 사용하여 천연가스의 원산지를 확인하기 위한 웹 기반 도구가 개발되었습니다.

C1은 전 세계적으로 해양/호수 퇴적물에서 발견되는 천연가스 수화물에 포함된 게스트 가스의 주요 구성 요소입니다. 이는 대부분 CO2 감소로 인한 미생물 C1로 구성되며 일반적으로 0.1% 미만으로 구성되는 C2 및 C3와 같은 기타 탄화수소 성분은 거의 없습니다15,16,17,18,19. 순수한 C1 수화물은 sI를 형성합니다. 따라서 현재까지 발견된 천연가스 수화물의 대부분은 sI15에 속합니다.

Empirical diagrams of hydrate-bound gases. (a) C1/(C2 + C3) plotted against C1 δ13C, based on the classification of Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e941">13; (b) C1 δ2H plotted against C1 δ13C, based on the classification of Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e957"13; and (c) C2 δ13C plotted against C1 δ13C, based on the classification of Milkov15. The data for Malenky, Bolshoy, Malyutka, P-2, K-0, K-2 and Goloustnoe are sourced partly from Hachikubo et al.33. The data for Kedr and Kedr-2 are sourced partly from Hachikubo et al.41./p>

Figure 2a shows the relationship between C1 δ13C and C1/(C2 + C3) plotted in the empirical diagram20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1064"13. More than 20 of the 60 total sites have C1 δ13C between − 68‰ and − 65‰ and C1/(C2 + C3) concentrated around 1000–5000, which means that microbial gas is enclathrated in more than one-third of the hydrate-bearing sites in Lake Baikal. However, along the mixing line from the microbial to thermogenic regions, C1 δ13C increases with a decrease in C1/(C2 + C3), passing through the mixed region of microbial and thermogenic gases to thermogenic gas (e.g., K-4, PosolBank, Kedr, and Kedr-2). For the eight sII hydrate data points, C1/(C2 + C3) is nearly constant at 6–7. Furthermore, C1 δ13C seems independent of the crystallographic structure at the same sites but differs considerably in K-3 and K-pockmark. This is because the hydrate-bearing sediment cores are different, even at the same site, indicating that the characteristics of the hydrate-bound gas can change markedly with slight differences in location. Gorevoy Utes43,44 is one of the two oil seep sites and plots in the field of secondary microbial gas (Fig. 2a)9. Another point, ZelenSeep, also plots near the Gorevoy Utes. Most of the data plotted for the thermogenic origin overlap with the field of secondary microbial gas./p>

Figure 2b shows the relationship between C1 δ13C and C1 δ2H, which is also plotted in an empirical diagram20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1130">13. The isotopic fractionation of C1 between the gas and hydrate phases is negligible when considering gas origins using a diagram45. C1 δ13C tends to increase with C1 δ2H. In a diagram by Whiticar12, hydrate-bound C1 in Lake Baikal is interpreted to be of microbial origin via methyl-type fermentation31,32,33,46. However, the latest diagram by Milkov and Etiope20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1165"13 shows that most of the C1 δ13C values below − 60‰ overlap completely with the microbial origin via CO2 reduction and may possibly be of an early mature origin. Therefore, it is difficult to determine the origin of C1 in Fig. 2b./p> 10%) of C3 and C4, whereas in Lake Baikal the ratio of C3 and C4 in the hydrate-bound gas is < 0.5% in the sII hydrates (Table S1). Therefore, C1 and C2 mixed-gas systems are responsible for the appearance of sII in Lake Baikal. Pure C1 and C2 hydrates each form sI, but in C1 and C2 mixed-gas systems, sII appears at certain mixing ratios36,37. In Lake Baikal, sII hydrates, in which the hydrate-bound gas was 85% C1 and 15% C2, were retrieved at Kukuy K-2 in 200531,32,33,46. Generally, the sII hydrate is adjacent to the sI hydrate with 1–4% C2, forming a "double structure". Current understanding of the process is that the formation processes of double-structure gas hydrates in Lake Baikal have been discussed extensively34,46,47,48. The formation of sI hydrates blocked the gas supply channel, causing dissolution of sI hydrates and secondary formation of sII hydrates by enrichment of C2 from the dissociated gas34,47. A detailed investigation of the sII hydrates at Kedr and Kedr-2 revealed that besides C2 also C3, i-C4, n-butane (n-C4), and neopentane (neo-C5, 2,2-dimethylpropane) are enriched in the crystals41. The sII hydrates are identified at eight sites: Kukuy K-2, K-3, K-4, K-10, and K-pockmark in the central sub-basin and PosolBank, Kedr, and Kedr-2 in the southern sub-basin. The C1/(C2 + C3) ratios of these hydrate-bound gases are concentrated at approximately 6–7 (Fig. 2a), and the contribution of C3 is negligible compared to that of C2 (Table S1). The homogeneous gas composition of sII hydrates over a wide area of Lake Baikal can be explained by the decomposition processes of C1 and C2 mixed gas hydrates and the concentration of C241,49./p>  − 42‰), C3 δ13C is widely distributed from − 20 to + 10‰, suggesting the effect of biodegradation. For example, C3 is selectively affected by microbial alteration and exhibits anomalous C3 δ13C50. C1-rich dry gas, large C1 δ13C (− 55‰ to − 35‰), and large CO2 δ13C (> + 2‰) have been proposed as characteristics of secondary microbial C19. The molecular and stable isotope compositions of CO2 in the hydrate-bound gas are unknown; however, the CO2 δ13C in the sediment gas around the hydrate crystals reaches + 20‰ (Kedr) and + 30‰ (Kedr-2)41, indicating the generation of secondary microbial C1. With two exceptions (Kukuy K-2 and K-10), the hydrate-bound gases of the sII crystals plot in the area of secondary microbial gases in Fig. 2a. Thus, at most sites in Lake Baikal, where thermogenic gas is supplied from a deeper sediment layer, hydrocarbons heavier than C3 are selectively and microbially degraded, resulting in the appearance of C1 and C2 mixed gas, further dissociation of sI hydrate, and the formation of sII hydrate adjacent to sI./p>

The C1 δ2H of hydrate-bound gas in marine sediments is generally concentrated between approximately − 200‰ to − 190‰ for microbial gas and is greater for thermogenic gas, reaching approximately − 140‰ for gas hydrates retrieved offshore of Vancouver Island and Costa Rica15. The distribution of C1 δ2H of the thermogenic gas ranges from − 300‰ to − 100‰11 and from − 350‰ to − 100‰20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1586"13. In addition, C1 δ2H tends to increase with C1 δ13C11,12. The factors that determine the C1 δ2H of thermogenic gas have not yet been clarified; however, it can be assumed that hydrogen isotope exchange occurs between C1 and environmental water. Based on the effect of temperature on the hydrogen isotope fractionation between C1 and hydrogen, and between hydrogen and water51, the hydrogen isotope fractionation between C1 and water can be expected to be smaller at higher temperatures. If the thermogenic gas produced by the decomposition of organic matter exchanges isotopically with environmental water during decomposition, the C1 δ2H of thermogenic gas in the deep sediment layers becomes greater than that of microbial gas produced in shallower sediment layers./p>

Although little information is available on microbial C3, a mechanism has been proposed by Hinrichs et al. for its formation from acetate and hydrogen58, in which it has been noted that C3 δ13C was greater than C2 δ13C, and Fig. 3b satisfies this relationship. In the area of microbial C2 where C2 δ13C is below − 42‰, C3 δ13C is also relatively low, ranging from − 40‰ to − 30‰, indicating that microbial C3 is more depleted in20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)." href="/articles/s41598-023-31669-7#ref-CR13" id="ref-link-section-d2440942e1975"13C than thermogenic C3./p>

20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018)./p>

2.0.CO;2" data-track-action="article reference" href="https://doi.org/10.1130%2F0091-7613%282002%29030%3C0631%3ASMVAMS%3E2.0.CO%3B2" aria-label="Article reference 28" data-doi="10.1130/0091-7613(2002)0302.0.CO;2"Article ADS Google Scholar /p>

공유하다